Title of article :
A note on metric compactifications and periodic points of maps
Author/Authors :
Kato، نويسنده , , Hisao، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
4
From page :
1406
To page :
1409
Abstract :
In this note, we investigate metric compactifications preserving some properties of periodic points of maps. In particular, we prove that if f : X → X is any map of a locally compact and finite-dimensional separable metric space X, then there exist a metric compactification γX of X and an extension γ f : γ X → γ X of f such that dim γ X = dim X , Cl γ X P i ( f ) = P i ( γ f ) and dim P i ( f ) = dim P i ( γ f ) for each i ∈ N , where P i ( f ) = { x ∈ X | f i ( x ) = x } ( = Fix ( f i ) ) . This is the affirmative answer to Kato (2013) [9, Problem 3.7].
Keywords :
Fixed-point free map , Periodic point , Coloring , Wallman compactification
Journal title :
Topology and its Applications
Serial Year :
2013
Journal title :
Topology and its Applications
Record number :
1583840
Link To Document :
بازگشت