Title of article :
Detecting topological groups which are (locally) homeomorphic to LF-spaces
Author/Authors :
Banakh، نويسنده , , T. and Mine، نويسنده , , K. and Repov?، نويسنده , , D. and Sakai، نويسنده , , K. and Yagasaki، نويسنده , , T.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Pages :
13
From page :
2272
To page :
2284
Abstract :
We prove that a topological group G is (locally) homeomorphic to an LF-space if G = ⋃ n ∈ ω G n for some increasing sequence of subgroups ( G n ) n ∈ ω such that(1) y neighborhoods U n ⊂ G n , n ∈ ω , of the neutral element e ∈ G n ⊂ G , the set ⋃ n = 1 ∞ U 0 U 1 ⋯ U n is a neighborhood of e in G; roup G n is (locally) homeomorphic to a Hilbert space; ery n ∈ N the quotient map G n → G n / G n − 1 is a locally trivial bundle; finitely many numbers n ∈ N each Z-point in the quotient space G n / G n − 1 = { x G n − 1 : x ∈ G n } is a strong Z-point.
Keywords :
LF-space , Topological group , Uniform space , direct limit
Journal title :
Topology and its Applications
Serial Year :
2013
Journal title :
Topology and its Applications
Record number :
1583959
Link To Document :
بازگشت