Title of article :
Unital hyperarchimedean vector lattices
Author/Authors :
Ball، نويسنده , , Richard N. and Marra، نويسنده , , Vincenzo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2014
Pages :
15
From page :
10
To page :
24
Abstract :
We prove that the category of unital hyperarchimedean vector lattices is equivalent to the category of Boolean algebras. The key result needed to establish the equivalence is that, via the Yosida representation, such a vector lattice is naturally isomorphic to the vector lattice of all locally constant real-valued continuous functions on a Boolean (= compact Hausdorff totally disconnected) space. We give two applications of our main result.
Keywords :
Yosida representation , Prime spectrum , Boolean space , Stone space , Locally constant function , Ring of continuous functions , Vector lattice , Strong order unit , Archimedean property , Cantor space , Hyperarchimedean property , Weak order unit , Lattice-ordered group , Boolean algebra
Journal title :
Topology and its Applications
Serial Year :
2014
Journal title :
Topology and its Applications
Record number :
1584229
Link To Document :
بازگشت