Title of article :
Linear frames in manifolds, riemannian structures and description of internal degrees of freedom
Author/Authors :
SLAWIANOWSKI، JAN J. نويسنده , , Jan J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
25
From page :
345
To page :
369
Abstract :
Discussed is affine model of internal degrees of freedom, i.e. infinitesimal Affnely rigid body in a manifold. The treatment is nonrelativistic and classical. The special stress is laid on geodetic models and invariance classification of a priori possible kinetic energies. Geometrically this is equivalent to deriving natural Riemannian structures in the bundle of linear frames from some geometry on the base manifold (affine connection, metric). It turns out that the general structure of dynamical balance laws resembles that derived in general relativity for the pole-dipole particle. Linear momentum and (affine) spin are coupled to the torsion and curvature tensors.
Keywords :
affine spin , CONNECTION , curvature , Hamilton equations , linear frames , Poisson brackets , Principal bundle , Riemann space , Riemann-Cartan space , Torsion , affinely rigid body , geodetics
Journal title :
Reports on Mathematical Physics
Serial Year :
2003
Journal title :
Reports on Mathematical Physics
Record number :
1584838
Link To Document :
بازگشت