Title of article :
Exponentiability of quadratic hamiltonians
Author/Authors :
Bjerrum Nielsen، نويسنده , , Erik and Rask، نويسنده , , Ole، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
We consider a Lie algebra of quadratic infinite polynomials of creation and annihilation operators and find that those algebras provide central extensions of some Lie algebras of bounded operators. We prove that the set of quadratic infinite polynomials of creation and annihilation operators corresponding to the ball {S ∈ invC(H)| |S|⩽13} is exponentiable on a dense subspace Γ0H of the Fock space ΓH.This is done simultaneously both in the symmetric and the anti-symmetric case.
Keywords :
Creation operators , Hilbert space , Boson Fock space , fermion Fock space , Spin representation , Metaplectic representation , quadratic Hamiltonians
Journal title :
Reports on Mathematical Physics
Journal title :
Reports on Mathematical Physics