Title of article :
The de Rham-Hodge-Skrypnik theory of Delsarte transmutation operators in multidimension and its applications
Author/Authors :
Prykarpatsky، نويسنده , , Yarema A. and Samoilenko، نويسنده , , Anatoliy M. and Prykarpatsky، نويسنده , , Anatoliy K. Prykarpatsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
20
From page :
351
To page :
370
Abstract :
We study differential-geometric and topological structures related with Delsarte transmutations of multi-dimensional differential operators in Hilbert spaces. Based on the naturally defined de Rham-Hodge-Skrypnik differential complex the relationships with spectral theory and special Berezansky type congruence properties of Delsarte transmuted operators are stated. Some applications to multi-dimensional differential operators are done including three-dimensional Laplace operator, two-dimensional classical Dirac operator and its multidimensional affine extension, related with self-dual Yang-Mills equations. The soliton-like solutions to the related set of nonlinear dynamical systems are discussed.
Keywords :
Delsarte transmutation operators , de Rham-Hodge-Skrypnik differential complex , Dirac operator , Darboux transformations , Laplace operator , operator pencils , soliton-like solutions
Journal title :
Reports on Mathematical Physics
Serial Year :
2005
Journal title :
Reports on Mathematical Physics
Record number :
1585677
Link To Document :
بازگشت