Title of article :
On The Spectral Zeta Function For The Noncommutative Harmonic Oscillator
Author/Authors :
Ichinose، نويسنده , , Takashi and Wakayama، نويسنده , , Masato، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
12
From page :
421
To page :
432
Abstract :
The spectral zeta function for the so-called noncommutative harmonic oscillator is able to be meromorphically extended to the whole complex plane, having only one simple pole at the same point s = 1 where Riemannʹs zeta function ζ(s) has, and possesses a trivial zero at each nonpositive even integer. The essential part of its proof is sketched. A new result is also given on the lower and upper bounds of the eigenvalues of the noncommutative harmonic oscillator.
Keywords :
spectral zeta functions , Harmonic oscillator , Riemannיs zeta function , harmonic oscillators , Weylיs law , Bernoulliיs number , Noncommutative
Journal title :
Reports on Mathematical Physics
Serial Year :
2007
Journal title :
Reports on Mathematical Physics
Record number :
1585807
Link To Document :
بازگشت