Title of article :
Hierarchical structure of operations defined in nonextensive algebra
Author/Authors :
Nivanen، نويسنده , , L. and Wang، نويسنده , , Q.A. and Le Méhauté، نويسنده , , A. and El Kaabouchi، نويسنده , , A. and Basillais، نويسنده , , P. and Donati، نويسنده , , J.D. and Lacroix، نويسنده , , A. and Paulet، نويسنده , , J. and Perriau، نويسنده , , S. and Sime Chuisse، نويسنده , , S. and Simo Kamdem، نويسنده , , E. and Théry، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
279
To page :
288
Abstract :
In the past few years, several generalized algebras were developed from physical background associated with the so-called nonextensive statistical mechanics. One of which, the q-generalized algebra, is a functional mimicking the morphisms between the standard algebraic operations through generalized exponential eax = (1+ax)1/a and logarithm l n a ( x ) = x a − 1 a . These functions and the resulting generalized operations possess very interesting mathematical properties and have been used in statistical physics for finite systems and nonextensive systems in general. We establish that the link between the two different operations can be either of functional or iterative nature. Both methods can be combined to introduce new nonextensive operations. The complete set of operations can be represented on a plane structured diagram. The generalized operations can be distributed into two classes, namely the “up” and “down” operations, depending on their localization in the diagram. The properties of generalized operations naturally arise from functional relations and equivalent properties of standard operations.
Keywords :
functional identities , nonextensive statistical physics , generalized algebra
Journal title :
Reports on Mathematical Physics
Serial Year :
2009
Journal title :
Reports on Mathematical Physics
Record number :
1585913
Link To Document :
بازگشت