Title of article :
Numerical bifurcation analysis of a tri-trophic food web with omnivory
Author/Authors :
Kooi، نويسنده , , B.W. and Kuijper، نويسنده , , L.D.J. and Boer، نويسنده , , M.P. and Kooijman، نويسنده , , S.A.L.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
28
From page :
201
To page :
228
Abstract :
We study the consequences of omnivory on the dynamic behaviour of a three species food web under chemostat conditions. The food web consists of a prey consuming a nutrient, a predator consuming a prey and an omnivore which preys on the predator and the prey. For each trophic level an ordinary differential equation describes the biomass density in the reactor. The hyperbolic functional response for single and multi prey species figures in the description of the trophic interactions. There are two limiting cases where the omnivore is a specialist; a food chain where the omnivore does not consume the prey and competition where the omnivore does not prey on the predator. We use bifurcation analysis to study the long-term dynamic behaviour for various degrees of omnivory. Attractors can be equilibria, limit cycles or chaotic behaviour depending on the control parameters of the chemostat. Often multiple attractor occur. In this paper we will discuss community assembly. That is, we analyze how the trophic structure of the food web evolves following invasion where a new invader is introduced one at the time. Generally, with an invasion, the invader settles itself and persists with all other species, however, the invader may also replace another species. We will show that the food web model has a global bifurcation, being a heteroclinic connection from a saddle equilibrium to a limit cycle of saddle type. This global bifurcation separates regions in the bifurcation diagram with different attractors to which the system evolves after invasion. To investigate the consequences of omnivory we will focus on invasion of the omnivore. This simplifies the analysis considerably, for the end-point of the assembly sequence is then unique. A weak interaction of the omnivore with the prey combined with a stronger interaction with the predator seems advantageous.
Keywords :
chemostat , community assembly , bifurcation analysis , Invasion , food web , persistence , omnivory
Journal title :
Mathematical Biosciences
Serial Year :
2002
Journal title :
Mathematical Biosciences
Record number :
1588654
Link To Document :
بازگشت