Author/Authors :
de Pillis، نويسنده , , L.G. and Gu، نويسنده , , W. and Fister، نويسنده , , K.R. and Head، نويسنده , , T. and Maples، نويسنده , , K. Durai Murugan، نويسنده , , A. and Neal، نويسنده , , T. and Yoshida، نويسنده , , K.، نويسنده ,
Abstract :
We investigate a mathematical model of tumor–immune interactions with chemotherapy, and strategies for optimally administering treatment. In this paper we analyze the dynamics of this model, characterize the optimal controls related to drug therapy, and discuss numerical results of the optimal strategies. The form of the model allows us to test and compare various optimal control strategies, including a quadratic control, a linear control, and a state-constraint. We establish the existence of the optimal control, and solve for the control in both the quadratic and linear case. In the linear control case, we show that we cannot rule out the possibility of a singular control. An interesting aspect of this paper is that we provide a graphical representation of regions on which the singular control is optimal.