Title of article :
Exact Markov chains versus diffusion theory for haploid random mating
Author/Authors :
Peder A. Tyvand، نويسنده , , Peder A. and Thorvaldsen، نويسنده , , Steinar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Exact discrete Markov chains are applied to the Wright–Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright–Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck.
Keywords :
diffusion , Haploid , Markov chain , Moran model , Random Mating , Wright–Fisher model
Journal title :
Mathematical Biosciences
Journal title :
Mathematical Biosciences