Title of article :
Feasibility study of minor actinide transmutation in light water reactors with various Am/Cm separation efficiencies
Author/Authors :
Tincher، نويسنده , , Daniell and Knight، نويسنده , , Travis W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
5295
To page :
5307
Abstract :
A study was conducted to evaluate the feasibility of minor actinide (MA) transmutation in light water reactors (LWR). The purpose of this work was to provide a guide for future investigations into MA transmutation in LWR. This work considered the effects of various Am/Cm separation efficiencies as well as homogeneous and heterogeneous MA bearing fuel assemblies. The MA content was introduced into the reactor as mixed oxide plus minor actinide (MOX + MA) fuel. Three Am/Cm separation efficiencies were independently considered: 99.9%, 99.0%, and 90.0%. In order to evaluate the feasibility of MA transmutation, the fuel performance of the various assemblies and core designs, as well as their respective safety related parameters, were calculated. The reduction of the burden of high level waste (HLW) motivated the investigation of MA transmutation. It was found that the MA bearing fuel assemblies and their subsequent core designs were able to perform within the safety limits required as well as achieving similar burnups to a UO2 core. The Am transmutation rates were ∼40% for the homogeneous assemblies and up to 68% for the MA targets in the heterogeneous assemblies after the described burnup, however, there was a significant amount of Cm produced during burnup. This Cm production was due to the more favorable neutron capture reaction over fission for Am in the thermal spectrum. Future work should examine the benefits of Am transmutation at the expense of large Cm production rates.
Journal title :
Nuclear Engineering and Design Eslah
Serial Year :
2011
Journal title :
Nuclear Engineering and Design Eslah
Record number :
1591753
Link To Document :
بازگشت