Title of article :
Semilinear reaction-diffusion systems with nonlocal sources
Author/Authors :
Deng، نويسنده , , Weibing and Li، نويسنده , , Yuxiang and Xie، نويسنده , , Chunhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
This paper investigates the homogeneous Dirichlet boundary value problem uit − δuit = ∏j=1n∫ω uJPij dx, i = 1, 2, …, n in a bounded domain Ω ⊂ RN, where pij ≥ 0 (1 ≤ i, j ≤ n) are constants. Denote by I the identity matrix and P = (pij), which is assumed to be irreducible. It is shown that if I - P is an M-matrix, every nonnegative solution is global, whereas if I - P is not an M-matrix, there exist both global and nonglobal nonnegative solutions.
Keywords :
reaction-diffusion systems , Finite time blowup , Nonlocal sources , global existence
Journal title :
Mathematical and Computer Modelling
Journal title :
Mathematical and Computer Modelling