Title of article :
Effect of shear connectors on local buckling and composite action in steel concrete composite walls
Author/Authors :
Zhang، نويسنده , , Kai and Varma، نويسنده , , Amit H. and Malushte، نويسنده , , Sanjeev R. and Gallocher، نويسنده , , Stewart، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (tp) and yield stress (Fy), and the shear connector spacing (s), stiffness (ks), and strength (Qn) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/tp) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.
Journal title :
Nuclear Engineering and Design Eslah
Journal title :
Nuclear Engineering and Design Eslah