Title of article :
Streamline diffusion method for treating coupling equations of hyperbolic scalar conservation laws
Author/Authors :
Izadi، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
In this paper we study the streamline diffusion finite element method for treating the one-dimensional time dependent coupling equations of two hyperbolic conservation laws. We derive optimal convergence rates, showing an a priori error estimate of order O ( h k + 1 / 2 ) in domains where the exact solution is smooth; here h is the mesh width and k is the degree of the piecewise polynomial functions spanning the finite element subspace. The corresponding optimal convergence rate for the standard Galerkin method is of order O ( h k ) . We justify this advantage of the streamline diffusion method versus the standard Galerkin with a series of numerical examples.
Keywords :
Basic stability estimate , Finite element method , Streamline diffusion method , A priori error estimates , Coupling equations
Journal title :
Mathematical and Computer Modelling
Journal title :
Mathematical and Computer Modelling