Author/Authors :
Hesameddini، E نويسنده Department of Mathematics, Faculty of Basic Sciences, Shiraz University of Technology, Modarres Blvd. P.O. Box, 71555-313, Shiraz, Iran Hesameddini, E , Shekarpaz، S نويسنده Department of Mathematics, Faculty of Basic Sciences, Shiraz University of Technology, Modarres Blvd. P.O. Box, 71555-313, Shiraz, Iran Shekarpaz, S
Abstract :
Dynamically adaptive numerical methods have been developed to find solutions for differential equations. The
subject of wavelet has attracted the interest of many researchers, especially, in finding efficient solutions for
differential equations. Wavelets have the ability to show functions at different levels of resolution. In this paper, a
numerical method is proposed for solving the second Painleve equation based on the Legendre wavelet. The
solutions of this method are compared with the analytic continuation and Adomian Decomposition methods and
the ability of the Legendre wavelet method is demonstrated.