Title of article :
Triple symmetric positive solutions for multipoint boundary-value problem with one-dimensional -Laplacian
Author/Authors :
Feng، نويسنده , , Hanying and Ge، نويسنده , , Weigao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
186
To page :
195
Abstract :
In this paper, we consider the multipoint boundary value problem for one-dimensional p -Laplacian ( ϕ p ( u ′ ( t ) ) ) ′ + q ( t ) f ( t , u ( t ) , u ′ ( t ) ) = 0 , t ∈ ( 0 , 1 ) , subject to the boundary conditions: u ( 0 ) − ∑ i = 1 n μ i u ′ ( ξ i ) = 0 , u ( 1 ) + ∑ i = 1 n μ i u ′ ( η i ) = 0 , where ϕ p ( s ) = | s | p − 2 s , p > 1 , μ i > 0 , 0 < ξ 1 < ξ 2 < ⋯ < ξ n < 1 / 2 , ξ i + η i = 1 , i = 1 , 2 , … , n . Applying the fixed point theorem due to Avery and Peterson, we study the existence of at least three symmetric positive solutions to the above boundary value problem. The interesting point is that the nonlinear term f contains the first-order derivative explicitly and the boundary condition is of Sturm–Liouville type.
Keywords :
One-dimensional p -Laplacian , Multipoint boundary value problem , Avery–Peterson’s fixed point theorem , Symmetric positive solution
Journal title :
Mathematical and Computer Modelling
Serial Year :
2008
Journal title :
Mathematical and Computer Modelling
Record number :
1595379
Link To Document :
بازگشت