Title of article :
On the nonlinear Hammerstein integral equations in Banach spaces and application to the boundary value problem of fractional order
Author/Authors :
Salem، نويسنده , , Hussein A.H. Salem، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
13
From page :
1178
To page :
1190
Abstract :
In this paper, we study the existence of solutions of the operator equations p + λ G f x = x in the Banach space C [ I , E ] . It is assumed the vector-valued function f is nonlinear Pettis-integrable. Some additional assumptions imposed on f are expressed in terms of a weak measure of noncompactness. To encompass the full scope of the paper, we investigate the existence of pseudo-solutions for the nonlinear boundary value problem of fractional type − d α d t α x ( t ) = λ f ( t , x ( t ) ) , a.e. on  [ 0 , 1 ] , x ( 0 ) = x ( 1 ) = 0 , α ∈ ( 1 , 2 ] , under the Pettis integrability assumption imposed on f .
Keywords :
fractional calculus , Boundary value problem , Pettis integrals
Journal title :
Mathematical and Computer Modelling
Serial Year :
2008
Journal title :
Mathematical and Computer Modelling
Record number :
1595770
Link To Document :
بازگشت