Title of article :
On ordinary and reverse Wiener indices of non-caterpillars
Author/Authors :
Luo، نويسنده , , Wei and Zhou، نويسنده , , Bo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
188
To page :
193
Abstract :
A tree is known as a caterpillar if the removal of all pendant vertices makes it a path. Otherwise, it is a non-caterpillar. From among all n -vertex non-caterpillars with given diameter d , we find the unique tree formed by attaching the path P 2 and n − d − 3 pendant vertices to a center of the path on d + 1 vertices with minimum Wiener index, where 4 ≤ d ≤ n − 3 , and we determine the n -vertex non-caterpillars with the k th greatest reverse Wiener indices for all k up to ⌊ n − 3 2 ⌋ if 8 ≤ n ≤ 26 and up to ⌊ n − 3 2 ⌋ − ⌈ a ( n ) ⌉ + 1 or ⌊ n − 3 2 ⌋ − ⌈ a ( n ) ⌉ + 2 depending on whether a ( n ) = n − 3 2 − n 2 + 2 n + 2 8 is an integer or not for even n , and ⌊ n − 3 2 ⌋ − ⌈ b ( n ) ⌉ + 1 or ⌊ n − 3 2 ⌋ − ⌈ b ( n ) ⌉ + 2 depending on whether b ( n ) = n − 3 2 − n 2 + 2 n + 5 8 is an integer or not for odd n if n ≥ 27 .
Keywords :
Tree , diameter , caterpillar , Reverse Wiener index , Wiener index
Journal title :
Mathematical and Computer Modelling
Serial Year :
2009
Journal title :
Mathematical and Computer Modelling
Record number :
1596405
Link To Document :
بازگشت