Title of article :
Improving the k-compressibility of Hyper Reduced Order Models with moving sources: Applications to welding and phase change problems
Author/Authors :
Cosimo، نويسنده , , Alejandro and Cardona، نويسنده , , Alberto and Idelsohn، نويسنده , , Sergio، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
27
From page :
237
To page :
263
Abstract :
The simulation of engineering problems is quite often a complex task that can be time consuming. In this context, the use of Hyper Reduced Order Models (HROMs) is a promising alternative for real-time simulations. In this work, we study the design of HROMs for non-linear problems with a moving source. Applications to nonlinear phase change problems with temperature dependent thermophysical properties are particularly considered; however, the techniques developed can be applied in other fields as well. c assumption in the design of HROMs is that the quantities that will be hyper-reduced are k-compressible in a certain basis in the sense that these quantities have at most k non-zero significant entries when expressed in terms of that basis. To reach the computational speed required for a real-time application, k must be small. This work examines different strategies for addressing hyper-reduction of the nonlinear terms with the objective of obtaining k-compressible signals with a notably small k. To improve performance and robustness, it is proposed that the different contributing terms to the residual are separately hyper-reduced. Additionally, the use of moving reference frames is proposed to simulate and hyper-reduce cases that contain moving heat sources. Two application examples are presented: the solidification of a cube in which no heat source is present and the welding of a tube in which the problem posed by a moving heat source is analysed.
Keywords :
Hyper reduction , Reduced order models , Moving sources , Welding , Proper orthogonal decomposition , phase change
Journal title :
Computer Methods in Applied Mechanics and Engineering
Serial Year :
2014
Journal title :
Computer Methods in Applied Mechanics and Engineering
Record number :
1596554
Link To Document :
بازگشت