Title of article :
Existence and global attractivity of positive periodic solutions of competitor–competitor–mutualist Lotka–Volterra systems with deviating arguments
Author/Authors :
Lv، نويسنده , , Xiang and Yan، نويسنده , , Ping and Lu، نويسنده , , Shiping، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
823
To page :
832
Abstract :
In this paper, we study the existence and global attractivity of periodic solutions of competitor–competitor–mutualist Lotka–Volterra systems with deviating arguments ( ∗ ) { x 1 ′ ( t ) = x 1 ( t ) ( r 1 ( t ) − a 11 ( t ) x 1 ( t − τ 11 ( t ) ) − a 12 ( t ) x 2 ( t − τ 12 ( t ) ) + a 13 ( t ) x 3 ( t − τ 13 ( t ) ) ) x 2 ′ ( t ) = x 2 ( t ) ( r 2 ( t ) − a 21 ( t ) x 1 ( t − τ 21 ( t ) ) − a 22 ( t ) x 2 ( t − τ 22 ( t ) ) + a 23 ( t ) x 3 ( t − τ 23 ( t ) ) ) x 3 ′ ( t ) = x 3 ( t ) ( r 3 ( t ) + a 31 ( t ) x 1 ( t − τ 31 ( t ) ) + a 32 ( t ) x 2 ( t − τ 32 ( t ) ) − a 33 ( t ) x 3 ( t − τ 33 ( t ) ) ) , where x 1 ( t ) and x 2 ( t ) denote the densities of competing species at time t , x 3 ( t ) denotes the density of cooperating species at time t , r i , a i j ∈ C ( R , [ 0 , ∞ ) ) and τ i j ∈ C ( R , R ) are w -periodic functions ( ω > 0 ) with r ̄ i = 1 w ∫ 0 w r i ( s ) d s > 0 ; a ̄ i j = 1 w ∫ 0 w a i j ( s ) ≥ 0 , i , j = 1 , 2 , 3 . We obtain sufficient conditions for the existence and global attractivity of positive periodic solutions of (∗) by Krasnoselskii’s fixed point theorem and the construction of Lyapunov functions.
Keywords :
Competitor–competitor–mutualist Lotka–Volterra systems , Krasnoselskii’s fixed point theorem , lyapunov function , Positive periodic solutions
Journal title :
Mathematical and Computer Modelling
Serial Year :
2010
Journal title :
Mathematical and Computer Modelling
Record number :
1596875
Link To Document :
بازگشت