Title of article :
Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems
Author/Authors :
Wang، نويسنده , , Dongqing and Chu، نويسنده , , Yanyun and Yang، نويسنده , , Guowei and Ding، نويسنده , , Feng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
309
To page :
317
Abstract :
This paper deals with the parameter identification problem of Hammerstein output error auto-regressive (OEAR) systems with different nonlinearities by combining the key-term separation principle and the auxiliary model identification idea. The basic idea is, by using the key-term separation principle, to present auxiliary model based recursive generalized least squares algorithms in terms of the auxiliary model idea. The proposed algorithm can obtain the system model parameter estimates and the noise model parameter estimates, and can be extended to other nonlinear systems.
Keywords :
Auxiliary model identification , Hammerstein models , Key-term separation principle , Nonlinear systems , Parameter estimation , Recursive identification
Journal title :
Mathematical and Computer Modelling
Serial Year :
2010
Journal title :
Mathematical and Computer Modelling
Record number :
1597105
Link To Document :
بازگشت