Title of article :
Three positive periodic solutions to nonlinear neutral functional differential equations with impulses and parameters on time scales
Author/Authors :
Wang، نويسنده , , Chao and Li، نويسنده , , Yongkun and Fei، نويسنده , , Yu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
1451
To page :
1462
Abstract :
In this paper, using the Leggett–Williams fixed point theorem, we investigate the existence of three positive periodic solutions to the nonlinear neutral functional differential equations with impulses and parameters on time scales { ( x ( t ) + c ( t ) x ( t − r 1 ) ) Δ = a ( t ) g ( x ( t ) ) x ( t ) − ∑ i = 1 n λ i f i ( t , x ( t − τ i ( t ) ) ) , t ≠ t j , t ∈ T , j = 1 , 2 , … , q , x ( t j − ) − x ( t j + ) = I j ( x ( t j ) ) , t = t j , j = 1 , 2 , … , q , where λ i , i = 1 , 2 , … , n are parameters, T is an ω -periodic time scale, a ∈ C ( T , R + ) , c ∈ C ( T , [ 0 , 1 ) ) and both of them are ω -periodic functions, τ i ∈ C ( T , R ) , i = 1 , 2 , … , n are ω -periodic functions, f i ∈ C ( T × R + , R + ) , i = 1 , 2 , … , n are nondecreasing with respect to their second arguments and ω -periodic with respect to their first arguments, respectively; g ∈ C ( R + , R + ) and there exist two positive constants l , L such that 0 < l ≤ g ( x ) ≤ L < ∞ for all x > 0 , I j ∈ C ( R , R + ) ( j = 1 , 2 , … , q ) and is bounded, r 1 is a constant.
Keywords :
neutral functional differential equations , Leggett–Williams fixed point theorem , Periodic Solutions , Impulses , Time scales
Journal title :
Mathematical and Computer Modelling
Serial Year :
2010
Journal title :
Mathematical and Computer Modelling
Record number :
1597331
Link To Document :
بازگشت