Title of article :
A generalized continuous surface tension force formulation for phase-field models for multi-component immiscible fluid flows
Author/Authors :
Kim، نويسنده , , Junseok، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
3105
To page :
3112
Abstract :
We present a new phase-field method for modeling surface tension effects on multi-component immiscible fluid flows. Interfaces between fluids having different properties are represented as transition regions of finite thickness across which the phase-field varies continuously. At each point in the transition region, we define a force density which is proportional to the curvature of the interface times a smoothed Dirac delta function. We consider a vector valued phase-field, the velocity, and pressure fields which are governed by multi-component advective Cahn–Hilliard and modified Navier–Stokes equations. The new formulation makes it possible to model any combination of interfaces without any additional decision criteria. It is general, therefore it can be applied to any number of fluid components. We give computational results for the four component fluid flows to illustrate the properties of the method. The capabilities of the method are computationally demonstrated with phase separations via a spinodal decomposition in a four-component mixture, pressure field distribution for three stationary drops, and the dynamics of two droplets inside another drop embedded in the ambient liquid.
Keywords :
Continuum surface tension , phase-field model , Navier–Stokes equation , Interfacial tension , Multi-component Cahn–Hilliard equation , Nonlinear multigrid method
Journal title :
Computer Methods in Applied Mechanics and Engineering
Serial Year :
2009
Journal title :
Computer Methods in Applied Mechanics and Engineering
Record number :
1597393
Link To Document :
بازگشت