Title of article :
Collision in a cross-shaped domain – A steady 2d Navier–Stokes example demonstrating the importance of mass conservation in CFD
Author/Authors :
Linke، نويسنده , , Alexander، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In the numerical simulation of the incompressible Navier–Stokes equations different numerical instabilities can occur. While instability in the discrete velocity due to dominant convection and instability in the discrete pressure due to a vanishing discrete Ladyzhenskaya–Babuska–Brezzi (LBB) constant are well-known, instability in the discrete velocity due to a poor mass conservation at high Reynolds numbers sometimes seems to be underestimated. At least, when using conforming Galerkin mixed finite element methods like the Taylor–Hood element, the classical grad-div stabilization for enhancing discrete mass conservation is often neglected in practical computations. Though simple academic flow problems showing the importance of mass conservation are well-known, these examples differ from practically relevant ones, since specially designed force vectors are prescribed. Therefore, we present a simple steady Navier–Stokes problem in two space dimensions at Reynolds number 1024, a colliding flow in a cross-shaped domain, where the instability of poor mass conservation is studied in detail and where no force vector is prescribed.
Keywords :
Incompressible Navier–Stokes equations , numerical instability , Poor mass conservation , mixed finite elements
Journal title :
Computer Methods in Applied Mechanics and Engineering
Journal title :
Computer Methods in Applied Mechanics and Engineering