Title of article :
On 3-edge-connected supereulerian graphs in graph family
Author/Authors :
Li، نويسنده , , Xiaomin and Li، نويسنده , , Dengxin and Lai، نويسنده , , Hong-Jian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
5
From page :
2455
To page :
2459
Abstract :
Let l > 0 and k ≥ 0 be two integers. Denote by C ( l , k ) the family of 2-edge-connected graphs such that a graph G ∈ C ( l , k ) if and only if for every bond S ⊂ E ( G ) with | S | ≤ 3 , each component of G − S has order at least ( | V ( G ) | − k ) / l . In this paper we prove that if a 3-edge-connected graph G ∈ C ( 12 , 1 ) , then G is supereulerian if and only if G cannot be contracted to the Petersen graph. Our result extends some results by Chen and by Niu and Xiong. Some applications are also discussed.
Keywords :
Collapsible graphs , Petersen graph , Reduction , Edge-cut , Supereulerian graphs
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1598366
Link To Document :
بازگشت