Title of article :
On the existence of latin squares with special distribution properties
Author/Authors :
Meier، نويسنده , , David، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
124
To page :
131
Abstract :
An n × n latin square ( a r , c | 0 ≤ r , c ≤ n − 1 ) is an ( s , t ) latin square if every subrectangle R i , j , 0 ≤ i , j ≤ n − 1 , consisting of cells { a i + k , j + ℓ | 0 ≤ k < t , 0 ≤ ℓ < s } , where the addition of indices is performed modulo n , contains s t different elements. We show that an ( s , t ) latin square exists if and only if n ≥ s t + t or n > s t and the product of the greatest common divisors g c d ( s , n ) g c d ( t , n ) is a divisor of n .
Keywords :
Latin squares , Rectangular subarrays , Cayley tables of cyclic groups , Conflict free access
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1598369
Link To Document :
بازگشت