Title of article :
The Laplacian spectral radius of trees and maximum vertex degree
Author/Authors :
Yuan، نويسنده , , Xi-Ying and Liu، نويسنده , , Yue and Han، نويسنده , , Miaomiao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
761
To page :
768
Abstract :
Let Δ ( T ) and μ ( T ) denote the maximum degree and the Laplacian spectral radius of a tree T , respectively. In this paper we prove that for two trees T 1 and T 2 on n ( n ≥ 21 ) vertices, if Δ ( T 1 ) > Δ ( T 2 ) and Δ ( T 1 ) ≥ ⌈ 11 n 30 ⌉ + 1 , then μ ( T 1 ) > μ ( T 2 ) , and the bound “ Δ ( T 1 ) ≥ ⌈ 11 n 30 ⌉ + 1 ” is the best possible. We also prove that for two trees T 1 and T 2 on 2 k ( k ≥ 4 ) vertices with perfect matchings, if Δ ( T 1 ) > Δ ( T 2 ) and Δ ( T 1 ) ≥ ⌈ k 2 ⌉ + 2 , then μ ( T 1 ) > μ ( T 2 ) .
Keywords :
Tree , maximum degree , Laplacian spectral radius
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1598402
Link To Document :
بازگشت