Title of article :
Vertex partitions of non-complete graphs into connected monochromatic -regular graphs
Author/Authors :
Sلrkِzy، نويسنده , , Gلbor N. and Selkow، نويسنده , , Stanley M. and Song، نويسنده , , Fei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
2079
To page :
2084
Abstract :
In a landmark paper, Erdős et al. (1991) [3] proved that if G is a complete graph whose edges are colored with r colors then the vertex set of G can be partitioned into at most c r 2 log r monochromatic, vertex disjoint cycles for some constant c . Sárközy extended this result to non-complete graphs, and Sárközy and Selkow extended it to k -regular subgraphs. Generalizing these two results, we show that if G is a graph with independence number α ( G ) = α whose edges are colored with r colors then the vertex set of G can be partitioned into at most ( α r ) c ( α r log ( α r ) + k ) vertex disjoint connected monochromatic k -regular subgraphs of G for some constant c .
Keywords :
vertex partitions , Monochromatic k -regular subgraphs
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1598427
Link To Document :
بازگشت