Title of article :
Embedding Steiner triple systems in hexagon triple systems
Author/Authors :
Lindner، نويسنده , , C.C. and Quattrocchi، نويسنده , , Gaetano and Rodger، نويسنده , , C.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
487
To page :
490
Abstract :
A hexagon triple is the graph consisting of the three triangles (triples) { a , b , c } , { c , d , e } , and { e , f , a } , where a , b , c , d , e , and f are distinct. The triple { a , c , e } is called an inside triple. A hexagon triple system of order n is a pair ( X , H ) where H is a collection of edge disjoint hexagon triples which partitions the edge set of K n with vertex set X . The inside triples form a partial Steiner triple system. We show that any Steiner triple system of order n can be embedded in the inside triples of a hexagon triple system of order approximately 3 n .
Keywords :
Steiner triple systems , embedding , 6-cycles
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598505
Link To Document :
بازگشت