Title of article :
An upper bound on the domination number of -vertex connected cubic graphs
Author/Authors :
Kostochka، نويسنده , , A.V. and Stodolsky، نويسنده , , B.Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
21
From page :
1142
To page :
1162
Abstract :
In 1996, Reed proved that the domination number γ ( G ) of every n -vertex graph G with minimum degree at least 3 is at most 3 n / 8 . This bound is sharp for cubic graphs if there is no restriction on connectivity. In this paper we show that γ ( G ) ≤ 4 n / 11 for every n -vertex cubic connected graph G if n > 8 . Note that Reed’s conjecture that γ ( G ) ≤ ⌈ n / 3 ⌉ for every connected cubic n -vertex graph G is not true.
Keywords :
cubic graphs , domination , Connected graphs
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598585
Link To Document :
بازگشت