Title of article :
Constructions of bi-regular cages
Author/Authors :
Araujo-Pardo، نويسنده , , G. and Balbuena، نويسنده , , C. and Valenzuela، نويسنده , , J.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
1409
To page :
1416
Abstract :
Given three positive integers r , m and g , one interesting question is the following: What is the minimum number of vertices that a graph with prescribed degree set { r , m } , 2 ≤ r < m , and girth g can have? Such a graph is called a bi-regular cage or an ( { r , m } ; g ) -cage, and its minimum order is denoted by n ( { r , m } ; g ) . In this paper we provide new upper bounds on n ( { r , m } ; g ) for some related values of r and m . Moreover, if r − 1 is a prime power, we construct the following bi-regular cages: ( { r , k ( r − 1 ) } ; g ) -cages for g ∈ { 5 , 7 , 11 } and k ≥ 2 even; and ( { r , k r } ; 6 ) -cages for k ≥ 2 any integer. The latter cages are of order n ( { r , k r } ; 6 ) = 2 ( k r 2 − k r + 1 ) . Then this result supports the conjecture that n ( { r , m } ; 6 ) = 2 ( r m − m + 1 ) for any r < m , posed by Yuansheng and Liang [Y. Yuansheng, W. Liang, The minimum number of vertices with girth 6 and degree set D = { r , m } , Discrete Math. 269 (2003) 249–258]. We finalize giving the exact value n ( { 3 , 3 k } ; 8 ) , for k ≥ 2 .
Keywords :
Cage graph , girth
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598604
Link To Document :
بازگشت