Title of article :
First eigenvalue and first eigenvectors of a nonsingular unicyclic mixed graph
Author/Authors :
Fan، نويسنده , , Yi-Zheng and Gong، نويسنده , , Shi-Cai and Wang، نويسنده , , Yi and Gao، نويسنده , , Yu-Bin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
2479
To page :
2487
Abstract :
Let G be a mixed graph and let L ( G ) be the Laplacian matrix of the graph G . The first eigenvalue and the first eigenvectors of G are respectively referred to the least nonzero eigenvalue and the corresponding eigenvectors of L ( G ) . In this paper we focus on the properties of the first eigenvalue and the first eigenvectors of a nonsingular unicyclic mixed graph (abbreviated to a NUM graph). We introduce the notion of characteristic set associated with the first eigenvectors, and then obtain some results on the sign structure of the first eigenvectors. By these results we determine the unique graph which minimizes the first eigenvalue over all NUM graphs of fixed order and fixed girth, and the unique graph which minimizes the first eigenvalue over all NUM graphs of fixed order.
Keywords :
girth , Characteristic set , Eigenvector , Mixed graph , Unicyclic graph , Eigenvalue
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598717
Link To Document :
بازگشت