Title of article :
Bipartite rainbow numbers of matchings
Author/Authors :
Li، نويسنده , , Xueliang and Tu، نويسنده , , Jianhua and Jin، نويسنده , , Zemin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
4
From page :
2575
To page :
2578
Abstract :
Given two graphs G and H , let f ( G , H ) denote the maximum number c for which there is a way to color the edges of G with c colors such that every subgraph H of G has at least two edges of the same color. Equivalently, any edge-coloring of G with at least r b ( G , H ) = f ( G , H ) + 1 colors contains a rainbow copy of H , where a rainbow subgraph of an edge-colored graph is such that no two edges of it have the same color. The number r b ( G , H ) is called the rainbow number of H with respect to G , and simply called the bipartite rainbow number of H if G is the complete bipartite graph K m , n . Erdős, Simonovits and Sós showed that r b ( K n , K 3 ) = n . In 2004, Schiermeyer determined the rainbow numbers r b ( K n , K k ) for all n ≥ k ≥ 4 , and the rainbow numbers r b ( K n , k K 2 ) for all k ≥ 2 and n ≥ 3 k + 3 . In this paper we will determine the rainbow numbers r b ( K m , n , k K 2 ) for all k ≥ 1 .
Keywords :
Edge-coloring , Rainbow subgraph , rainbow number
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598734
Link To Document :
بازگشت