Title of article :
A non-existence result on cyclic cycle-decompositions of the cocktail party graph
Author/Authors :
Buratti، نويسنده , , Marco and Rinaldi، نويسنده , , Gloria، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
5
From page :
4722
To page :
4726
Abstract :
We prove that in every cyclic cycle-decomposition of K 2 n − I (the cocktail party graph of order 2 n ) the number of cycle-orbits of odd length must have the same parity of n ( n − 1 ) / 2 . This gives, as corollaries, some useful non-existence results one of which allows to determine when the two table Oberwolfach Problem O P ( 3 , 2 ℓ ) admits a 1-rotational solution.
Keywords :
Cocktail party graph , (1-rotational) 2-factorization , graceful labeling , Oberwolfach problem , Circulant graph , Complete Graph , (Cyclic) cycle-decomposition
Journal title :
Discrete Mathematics
Serial Year :
2009
Journal title :
Discrete Mathematics
Record number :
1598990
Link To Document :
بازگشت