Title of article :
On isomorphic linear partitions in cubic graphs
Author/Authors :
Fouquet، نويسنده , , J.-L. and Thuillier، نويسنده , , H. and Vanherpe، نويسنده , , J.-M. and Wojda، نويسنده , , A.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and l a ( G ) is the minimum number of linear forests in a linear partition. It is well known that l a ( G ) = 2 when G is a cubic graph and Wormald [N. Wormald, Problem 13, Ars Combinatoria 23(A) (1987) 332–334] conjectured that if | V ( G ) | ≡ 0 (mod 4), then it is always possible to find a linear partition in two isomorphic linear forests. Here, we give some new results concerning this conjecture.
Keywords :
cubic graphs , linear-arboricity
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics