Title of article :
On the number of graphs with a given endomorphism monoid
Author/Authors :
Koubek، نويسنده , , V?clav and R?dl، نويسنده , , Vojt?ch، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
376
To page :
384
Abstract :
For a given finite monoid M , let ς M ( n ) be the number of graphs on n vertices with endomorphism monoid isomorphic to M . For any nontrivial monoid M we prove that 2 1 2 ( n 2 − ( 1 + o ( 1 ) ) d ( M ) n ) ≤ ς M ( n ) ≤ 2 1 2 ( n 2 − ( 1 + o ( 1 ) ) c ( M ) n ) where c ( M ) and d ( M ) are constants depending only on M with 1.83 ≤ c ( M ) ≤ d ( M ) ≤ 3 | M | + 1 + 8 | M | 3 2 . ery k there exists a monoid M of size k with d ( M ) ≤ 3 , on the other hand if a group of unity of M has a size k > 2 then c ( M ) ≥ log k log log k + 1 .
Keywords :
Rigid graph , Endomorphism monoid of graph
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599247
Link To Document :
بازگشت