Title of article :
Bipancyclic properties of Cayley graphs generated by transpositions
Author/Authors :
Tanaka، نويسنده , , Yuuki and Kikuchi، نويسنده , , Yosuke and Araki، نويسنده , , Toru and Shibata، نويسنده , , Yukio، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
748
To page :
754
Abstract :
Cycle is one of the most fundamental graph classes. For a given graph, it is interesting to find cycles of various lengths as subgraphs in the graph. The Cayley graph Cay ( S n , S ) on the symmetric group has an important role for the study of Cayley graphs as interconnection networks. In this paper, we show that the Cayley graph generated by a transposition set is vertex-bipancyclic if and only if it is not the star graph. We also provide a necessary and sufficient condition for Cay ( S n , S ) to be edge-bipancyclic.
Keywords :
Cayley graph , Bipancyclicity , Transposition tree
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599292
Link To Document :
بازگشت