Title of article :
An upper bound for the -barycentric Davenport constant of groups of prime order
Author/Authors :
Luong، نويسنده , , Tran Dinh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
5
From page :
2801
To page :
2805
Abstract :
Let G be a finite abelian group and let k ⩾ 2 be an integer. A sequence of k elements a 1 , a 2 , … , a k in G is called a k -barycentric sequence if there exists j ∈ { 1 , 2 , … , k } such that ∑ i = 1 k a i = k a j . The k -barycentric Davenport constant BD ( k , G ) is defined to be the smallest number s such that every sequence in G of length s contains a k -barycentric subsequence. In this paper, we prove that if p ⩾ 5 is a prime, then BD ( k , Z p ) ⩽ p + k − ⌊ p − 2 k ⌋ − 2 for 3 ⩽ k ⩽ p − 1 , which improves a result of Delorme et al.
Keywords :
k -barycentric Davenport constant , k -barycentric sequences
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599434
Link To Document :
بازگشت