Title of article :
On the two largest -eigenvalues of graphs
Author/Authors :
Wang، نويسنده , , JianFeng and Belardo، نويسنده , , Francesco and Huang، نويسنده , , QiongXiang and Borovi?anin، نويسنده , , Bojana، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
2858
To page :
2866
Abstract :
In this paper, we first give an upper bound for the largest signless Laplacian eigenvalue of a graph and find all the extremal graphs. Secondly, we consider the second-largest signless Laplacian eigenvalue and we characterize the connected graphs whose second-largest signless Laplacian eigenvalue does not exceed 3. Furthermore, we give the signless Laplacian spectral characterization of the latter graphs. In particular, the well-known friendship graph is proved to be determined by the signless Laplacian spectrum.
Keywords :
Cospectral graphs , Largest eigenvalue , Graph index , friendship graph , Signless Laplacian , spectral characterization
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599443
Link To Document :
بازگشت