Title of article :
Convex bodies with minimal volume product in — a new proof
Author/Authors :
Lin، نويسنده , , Youjiang and Leng، نويسنده , , Gangsong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
3018
To page :
3025
Abstract :
A new proof of the Mahler conjecture in R 2 is given. In order to prove the result, we introduce a new method — the vertex removal method; i.e., for any origin-symmetric polygon P , there exists a linear image ϕ P contained in the unit disk B 2 , and there exist three contiguous vertices of ϕ P lying on the boundary of B 2 . We can show that the volume-product of P decreases when we remove the middle vertex of the three vertices.
Keywords :
Mahler conjecture , Polytope , Convex body , Polar body
Journal title :
Discrete Mathematics
Serial Year :
2010
Journal title :
Discrete Mathematics
Record number :
1599460
Link To Document :
بازگشت