Title of article :
Upper bounds on the linear chromatic number of a graph
Author/Authors :
Li، نويسنده , , Chao and Wang، نويسنده , , Weifan and Raspaud، نويسنده , , André، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
232
To page :
238
Abstract :
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is a union of vertex-disjoint paths. The linear chromatic number lc ( G ) of G is the smallest number of colors in a linear coloring of G . be a graph with maximum degree Δ ( G ) . In this paper we prove the following results: (1) lc ( G ) ≤ 1 2 ( Δ ( G ) 2 + Δ ( G ) ) ; (2) lc ( G ) ≤ 8 if Δ ( G ) ≤ 4 ; (3) lc ( G ) ≤ 14 if Δ ( G ) ≤ 5 ; (4) lc ( G ) ≤ ⌊ 0.9 Δ ( G ) ⌋ + 5 if G is planar and Δ ( G ) ≥ 52 .
Keywords :
Linear coloring , maximum degree , Planar graph
Journal title :
Discrete Mathematics
Serial Year :
2011
Journal title :
Discrete Mathematics
Record number :
1599559
Link To Document :
بازگشت