Title of article :
Higher order log-concavity in Euler’s difference table
Author/Authors :
Chen، نويسنده , , William Y.C. and Gu، نويسنده , , Cindy C.Y. and Ma، نويسنده , , Kevin J. and Wang، نويسنده , , Larry X.W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
For 0 ≤ k ≤ n , let e n k be the entries in Euler’s difference table and let d n k = e n k / k ! . Dumont and Randrianarivony showed e n k equals the number of permutations on [ n ] whose fixed points are contained in { 1 , 2 , … , k } . Rakotondrajao found a combinatorial interpretation of the number d n k in terms of k -fixed-points-permutations of [ n ] . We show that for any n ≥ 1 , the sequence { d n k } 0 ≤ k ≤ n is essentially 2-log-concave and reverse ultra log-concave.
Keywords :
Log-concavity , 2-log-concavity , Reverse ultra log-concavity , Euler’s difference table
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics