Title of article :
On finite Steiner surfaces
Author/Authors :
Zanella، نويسنده , , Corrado، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
5
From page :
652
To page :
656
Abstract :
Unlike the real case, for each q power of a prime it is possible to injectively project the quadric Veronesean of P G ( 5 , q ) into a solid or even a plane. Here a finite analogue of the Roman surface of J. Steiner is described. Such an analogue arises from an embedding σ of P G ( 2 , q ) into P G ( 3 , q ) mapping any line onto a non-singular conic. Its image P G ( 2 , q ) σ has a nucleus, say T σ , arising from three points of P G ( 2 , q 3 ) forming an orbit of the Frobenius collineation.
Keywords :
Veronese surface , Steiner surface
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599848
Link To Document :
بازگشت