Title of article :
Factorizations of complete graphs into brooms
Author/Authors :
Kov??، نويسنده , , Petr and Kubesa، نويسنده , , Michael and Meszka، نويسنده , , Mariusz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
1084
To page :
1093
Abstract :
Let r and n be positive integers with r < 2 n . A broom of order 2 n is the union of the path on P 2 n − r − 1 and the star K 1 , r , plus one edge joining the center of the star to an endpoint of the path. It was shown by Kubesa (2005) [10] that the broom factorizes the complete graph K 2 n for odd n and r < ⌊ n 2 ⌋ . In this note we give a complete classification of brooms that factorize K 2 n by giving a constructive proof for all r ≤ n + 1 2 (with one exceptional case) and by showing that the brooms for r > n + 1 2 do not factorize the complete graph K 2 n .
Keywords :
graph factorization , spanning trees , Graph labeling
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599894
Link To Document :
بازگشت