Title of article :
Magic and antimagic -decompositions
Author/Authors :
Noor Inayah Yaakub، نويسنده , , N. and Lladَ، نويسنده , , A. and Moragas، نويسنده , , J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
5
From page :
1367
To page :
1371
Abstract :
A decomposition of a graph G into isomorphic copies of a graph H is H -magic if there is a bijection f : V ( G ) ∪ E ( G ) → { 0 , 1 , … , | V ( G ) | + | E ( G ) | − 1 } such that the sum of labels of edges and vertices of each copy of H in the decomposition is constant. It is known that complete graphs do not admit K 2 -magic decompositions for n > 6 . By using the results on the sumset partition problem, we show that the complete graph K 2 m + 1 admits T -magic decompositions by any graceful tree with m edges. We address analogous problems for complete bipartite graphs and for antimagic and ( a , d ) -antimagic decompositions.
Keywords :
Graph decompositions , Magic labelings
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1599929
Link To Document :
بازگشت