Author/Authors :
Chang، نويسنده , , Gerard J. and Roussel، نويسنده , , Nicolas، نويسنده ,
Abstract :
Let G be a planar graph with maximum degree Δ ( G ) . In this paper, we prove that G is ( Δ ( G ) + 1 )-total choosable if G has no cycle of length from 4 to k and has minimum distance at least d Δ between triangles for ( Δ ( G ) , k , d Δ ) = ( 6 , 4 , 1 ) , ( 5 , 5 , 2 ) , ( 5 , 6 , 1 ) , ( 5 , 7 , 0 ) , ( 4 , 6 , 3 ) , ( 4 , 7 , 2 ) , ( 4 , 10 , 1 ) .
Keywords :
Planar graphs , Missing cycles , total coloring , Total choosability , List-total coloring , distance