Title of article :
Nowhere-zero 3-flows and -connectivity in bipartite graphs
Author/Authors :
Li، نويسنده , , Liangchen and Li، نويسنده , , Xiangwen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Tutte conjectured that every 4-edge-connected graph admits a nowhere-zero 3-flow. Let F 12 be a family of graphs such that G ∈ F 12 if and only if G is a simple bipartite graph on 12 vertices and δ ( G ) = 4 . Let G be a simple bipartite graph on n vertices. It is proved in this paper that if δ ( G ) ≥ ⌈ n 4 ⌉ + 1 , then G admits a nowhere-zero 3-flow with only one exceptional graph. Moreover, if G ∉ F 12 with the minimum degree at least ⌈ n 4 ⌉ + 1 is Z 3 -connected. The bound is best possible in the sense that the lower bound for the minimum degree cannot be decreased.
Keywords :
Nowhere-zero 3-flows , Z 3 -connectivity , Bipartite graphs
Journal title :
Discrete Mathematics
Journal title :
Discrete Mathematics