Title of article :
On the vertex-arboricity of planar graphs without 7-cycles
Author/Authors :
Huang، نويسنده , , Danjun and Shiu، نويسنده , , Wai Chee and Wang، نويسنده , , Weifan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
12
From page :
2304
To page :
2315
Abstract :
The vertex arboricity v a ( G ) of a graph G is the minimum number of colors the vertices can be labeled so that each color class induces a forest. It was well-known that v a ( G ) ≤ 3 for every planar graph G . In this paper, we prove that v a ( G ) ≤ 2 if G is a planar graph without 7-cycles. This extends a result in [A. Raspaud, W. Wang, On the vertex-arboricity of planar graphs, European J. Combin. 29 (2008) 1064–1075] that for each k ∈ { 3 , 4 , 5 , 6 } , planar graphs G without k -cycles have v a ( G ) ≤ 2 .
Keywords :
Vertex arboricity , Planar graph , cycle
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1600028
Link To Document :
بازگشت