Title of article :
Proper connection of graphs
Author/Authors :
Borozan، نويسنده , , Valentin and Fujita، نويسنده , , Shinya and Gerek، نويسنده , , Aydin and Magnant، نويسنده , , Colton and Manoussakis، نويسنده , , Yannis and Montero، نويسنده , , Leandro and Tuza، نويسنده , , Zsolt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
11
From page :
2550
To page :
2560
Abstract :
An edge-colored graph G is k -proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k -proper connection number of a connected graph G , denoted by p c k ( G ) , is the smallest number of colors that are needed to color the edges of G in order to make it k -proper connected. In this paper we prove several upper bounds for p c k ( G ) . We state some conjectures for general and bipartite graphs, and we prove them for the case when k = 1 . In particular, we prove a variety of conditions on G which imply p c 1 ( G ) = 2 .
Keywords :
Proper coloring , Proper connection
Journal title :
Discrete Mathematics
Serial Year :
2012
Journal title :
Discrete Mathematics
Record number :
1600061
Link To Document :
بازگشت